
Photoionization Detector (PID) Sensors

4-Series 10.6eV

Senovol PID sensors are designed for the detection of a wide variety of volatile organic compounds (VOCs). In general, any compound with an ionization energy (IE) lower than that of the lamp photons can be measured. Based on its proprietary ultraviolet (UV) lamp technology, Senovol PID sensors have the advanced features of high UV outputs, and long lamp life spans.

Product Dimensions

All dimensions in mm

Performance

Photon energy 10.6 eV

Measurement range $0 \sim 10,000$ ppm isobutylene Resolution $0.5 \sim 2,000$ ppb isobutylene

Response time (T90) < 5 seconds Baseline shift (20°C) 70 ± 15 mV

Linearity linear from 0.045 ~ 2.5 V

Electrical

Supply voltage $3.2 \sim 5.5 \text{ V}$ Working current < 35 mA at 5 VOutput signal $0.045 \sim 2.5 \text{ V}$

Mechanical

Enclosure Stainless steel Weight 15 grams

Temperature range $-20^{\circ}\text{C} \sim +50^{\circ}\text{C}$ Pressure range $1 \text{ atm} \pm 10\%$ Humidity range $0 \% \sim 99 \%\text{RH}$ Non-condensing

Life Time

Storage Temp $0 \, ^{\circ}\text{C} \sim 30 \, ^{\circ}\text{C}$

Operating lifetime 5 years (excluding lamp and

electrodes)

Typical lamp life 10,000 hours

Storage life 2 years in original packaging

Warranty 12 months

Approvals

CE

Note: IECEx and ATEX approvals on different 4-Series

PID models.

Environmental

Installation

The output signals from the sensor pins are different. Inappropriate use of the pins in product design will affect the sensor functionality. Exposure to high concentrations of solvent vapors should be avoided under any condition. Mechanical overstress may cause deformation of the sensor enclosure and damage the internal components including the lamp. If the sensor is used in extreme environmental conditions, please contact us for more details.

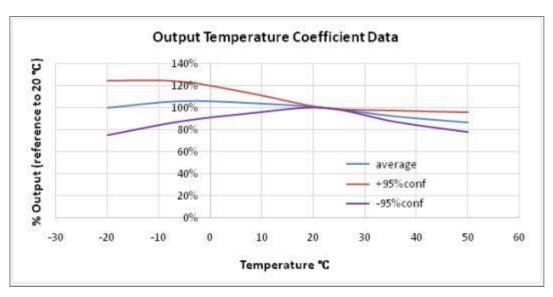
sales@eursense.com www.eursense.com

Pin Out Details

Pin 1 - VCC

Pin 2 - GND

Pin 3 - VOUT


Product Selection

Product Name	Part Number	Measurement Range	Photon Energy	Resolution	Sensitivity	Response Time
4PID-5	PID-106S-0050	0 ~5 ppm	10.6 eV	0.5 ppb	> 200 mV/ppm	< 5 s
4PID-10	PID-106S-0100	0 ~10 ppm	10.6 eV	1 ppb	> 100 mV/ppm	< 5 s
4PID-50	PID-106S-0500	0 ~ 50 ppm	10.6 eV	10 ppb	> 20 mV/ppm	< 5 s
4PID-100	PID-106S-1000	0 ~100 ppm	10.6 eV	25 ppb	> 10 mV/ppm	< 5 s
4PID-200	PID-106S-2000	0 ~ 200 ppm	10.6 eV	50 ppb	> 5 mV/ppm	< 5 s
4PID-2000	PID-106S-2001	0 ~ 2,000 ppm	10.6 eV	500 ppb	> 0.5 mV/ppm	< 5 s
4PID-5000	PID-106S-5001	0 ~ 5,000 ppm	10.6 eV	1,000 ppb	> 0.2 mV/ppm	< 5 s
4PID-10000	PID-106S-1002	0 ~ 10,000 ppm	10.6 eV	2,000 ppb	> 0.1 mV/ppm	< 5 s

Note

The performance data in this document is taken by applying isobutylene to the PID sensor using Senovol lab testers. The PID sensor may perform differently if gases other than isobutylene are used.

Sensitivity Temperature Data

Safety Note

If the sensor is used in certain instruments for life critical applications, it is required to read the instrument user's guide carefully and comply with the calibration procedures by using the certified target calibration gas before each use.

Failure to do so may cause serious injury and/or fatality. It is highly recommended for customers to validate the sensor performance using this document as a reference for their product designs or applications.